MASALAH MINIMASI

Masalah maksimasi, biasanya memiliki kendala pertidaksamaan jenis ≤. Masalah minimasi biasanya memiliki kendala pertidaksamaan jenis ≥. Masalah minimasi menggunakan langkah-langkah yang sama seperti pada masalah maksimasi, tetapi ada beberapa penyesuaian yang harus dibuat. Bagi kendala pertidaksamaan jenis ≤, maka *variabel slack* ditambahkan untuk menghabiskan sumber daya yang digunakan dalam kendala. Cara ini tidak dapat diterapkan pada kendala pertidaksamaan jenis ≥ dan kendala persamaan (=).

Contoh:

Minimumkan
$$Z = -3X_1 + X_2 + X_3$$
 dengan syarat :
$$X_1 - 2X_2 + X_3 \leq 11$$

$$-4X_1 + X_2 + 2X_3 \geq 3$$

$$2X_1 - X_3 = -1$$

$$X_1 , X_2 , X_3 \geq 0$$

Persamaan pada kendala ke tiga harus dirubah agar memiliki nilai kanan positif dengan cara dikalikan (-1), sehingga menjadi :

$$-2X_1 + X_3 = 1$$

Persamaannya berubah menjadi :

Minimumkan
$$Z = -3X_1 + X_2 + X_3$$
 dengan syarat :
$$X_1 - 2X_2 + X_3 \leq 11$$

$$-4X_1 + X_2 + 2X_3 \geq 3$$

$$-2X_1 + X_3 = 1$$

$$X_1 , X_2 , X_3 \geq 0$$

Bentuk baku diperoleh dengan **menambahkan variabel slack** pada kendala pertama, **mengurangkan variabel surplus** pada kendala kedua. Sehingga diperoleh:

METODE SIMPLEX M (BIG - M)

Pada pendekatan ini, artifisial variabel dalam fungsi tujuan diberi suatu biaya sangat besar. Dalam praktek, huruf **M** digunakan sebagai biaya dalam masalah minimasi dan **–M** sebagai keuntungan dalam masalah maksimasi dengan asumsi bahwa **M** adalah *suatu bilangan positif yang besar*.

Untuk mengarahkan artifisial variabel menjadi nol, suatu biaya yang besar ditempatkan pada A_1 dan A_2 , sehingga fungsi tujuannya menjadi :

Minimumkan
$$Z = -3X_1 + X_2 + X_3 + 0S_1 + 0S_2 + MA_1 + MA_2$$

Tabel simplex awal dibentuk dengan $S_{\rm 1}$, $A_{\rm 1}$ dan $A_{\rm 2}$ sebagai variabel basis seperti pada tabel berikut :

basis	X ₁	X ₂	X ₃	S ₁	S ₂	A ₁	A ₂	NK
Z	3-6M	-1+M	-1+3M	0	-M	0	0	4M
S ₁	1	-2	1	1	0	0	0	11
A_1	-4	1	2	0	-1	1	0	3
A_2	-2	0	1	0	0	0	1	1

Koefisien persamaan Z dalam masalah minimasi lebih mudah diperoleh dengan menggunakan *Inner Product Rule*. Aturan ini juga berlaku untuk masalah maksimasi. *Inner Product Rule* itu adalah :

$$C_j = (v)(v_j) - c_j$$
, dimana

keterangan:

C_i: koefisien variabel j pada persamaan Z

v : vektor baris koefisien fungsi tujuan variabel basis

 v_j : vektor kolom elemen dibawah variabel j c_i : koefisien variabel j pada fungsi tujuan

$$C_{X1} = [0 \text{ M M}] \begin{bmatrix} 1 \\ -4 \\ -2 \end{bmatrix} - (-3) = 3-6\text{M} \qquad C_{S2} = [0 \text{ M M}] \begin{bmatrix} 0 \\ -1 \\ 0 \end{bmatrix} - 0 = -\text{M}$$

$$C_{X2} = [0 \text{ M M}] \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} - 1 = -1+\text{M} \qquad C_{A1} = [0 \text{ M M}] \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} - \text{M} = 0$$

$$C_{X3} = [0 \text{ M M}] \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} - 1 = -1+3\text{M} \qquad C_{A2} = [0 \text{ M M}] \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} - \text{M} = 0$$

$$C_{S1} = [0 \text{ M M}] \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} - 0 = 0 \qquad C_{NK} = [0 \text{ M M}] \begin{bmatrix} 11 \\ 3 \\ 1 \end{bmatrix} - 0 = 4\text{M}$$

Tabel simplex awal

basis	X ₁	X_2	X_3	S ₁	S ₂	\mathbf{A}_1	A_2	NK	Rasio
Z	3-6M	-1+M	-1+3M	0	-M	0	0	4M	
S ₁	1	-2	1	1	0	0	0	11	11 : 1 = 11
A ₁	-4	1	2	0	-1	1	0	3	3 : 2 = 1.5
A ₂	-2	0	1	0	0	0	1	1	1:1=1

Dengan menggunakan cara yang sama pada masalah maksimasi maka perlu dihitung **new pivot equation** untuk A_2 , yang selanjutnya dengan memakai metode **Gauss Jordan** hitung nilai variabel basis yang lain.

Tabel simplex iterasi pertama

basis	X ₁	X ₂	X ₃	S ₁	S ₂	A ₁	A ₂	NK	Rasio
Z	1	-1+M	0	0	-M	0	1-3M	1-M	
S ₁	3	-2	0	1	0	0	-1	10	*
A ₁	0	1	0	0	-1	1	-2	1	1:1=1
X ₃	-2	0	1	0	0	0	1	1	*

Iterasi pertama belum menghasilkan solusi dasar layak karena A_1 masih bernilai positif. Iterasi berikutnya menunjukkan bahwa X_2 sebagai entering varabel dan A_1 sebagai leaving variabel.

Tabel simplex iterasi kedua

basis	X ₁	X ₂	X ₃	S ₁	S ₂	A ₁	A ₂	NK	Rasio
Z	1	0	0	0	1	1-M	1-M	2	
S ₁	3	0	0	1	-2	2	-5	12	12 : 3 = 4
X ₂	0	1	0	0	-1	1	-2	1	*
X ₃	-2	0	1	0	0	0	1	1	*

 $\mathbf{X_2}$ dan $\mathbf{X_3}$ telah menjadi nol pada koefisien fungsi tujuan, sehingga iterasi kedua merupakan solusi dasar layak, tetapi ini bukan solusi optimal karena $\mathbf{X_1}$ masih bernilai positif yang dapat memperbaiki fungsi tujuan jika menggantikan $\mathbf{S_1}$ sebagai basis.

Tabel simplex iterasi ketiga (optimal)

basis	X ₁	X ₂	X ₃	S ₁	S ₂	A ₁	A ₂	NK
Z	0	0	0	-1/3	-1/3	(1/3)-M	(2/3)-M	- 2
X ₁	1	0	0	1/3	-2/3	2/3	-5/3	4
X ₂	0	1	0	0	-1	1	-2	1
X ₃	0	0	1	2/3	-4/3	4/3	-7/3	9

Iterasi ketiga adalah optimal karena koefisien pada persamaan Z semuanya non positif, dengan $X_1 = 4$, $X_2 = 1$ dan $X_3 = 9$ sedangkan Z = -2.